Skip to Content

Category: The Emergent Microbiome Series

The Emergent Microbiome: A Revolution for the Life Sciences – Part III, Psychobiotics

Research into the microbiome focuses heavily on bacteria living in the gut, which houses more bacteria than any other organ. These bacteria are being studied not only because they play a role in gastrointestinal disorders like Inflammatory Bowel Disease (IBD), Crohn’s Disease, and colorectal cancer, but also because they can influence diverse and distal organs. The gut-brain-axis – the term for the neurochemical pathway between the intestine and the brain – is a prominent example of such a relationship. As the research is starting to progress in this area, we are also beginning to see patents relating to this area.

The Emergent Microbiome: A Revolution for the Life Sciences – Part II, 2015 Patent Trends

Microbiome-related therapies typically involve compositions containing bacteria — often called probiotics — that treat disease or promote health. Some therapies change the composition of the gut microbiome by providing desirable bacterial species, nutrients that promote the growth of desirable microbiome members, or bacterial species that displace bacterial pathogens. Other therapies comprise bacteria or bacterial components that interact with the patient’s own organs, tissues, and systems. Many of these therapies stimulate the immune system, and therapies are being developed to treat various metabolic, inflammatory, and infectious diseases.

The Emergent Microbiome: A Revolution for the Life Sciences – Part I, R&D Leaders

Research into the microbiome seeks to characterize the microorganisms that live in and on different environments. Although these environments can be broadly terrestrial, extraterrestrial aquatic, and biological, we often use the term specifically to describe the bacteria living in and on different sites of the human body. The word “microbiome” refers either to the organisms themselves (also called “microbiota”) or their collective genomes. Within the human gut, the most bacteria-rich organ, these genes outnumber those in the human genome 100: 1, providing attractive candidates for pharmaceutical intervention. Inflammatory bowel disease (IBD), childhood-onset asthma, diabetes, obesity, cardiovascular disease, colorectal cancer, and antibiotic-associated diarrhea are some of the diseases that involve changes in the composition or loss of the function of the microbiome.